

MACHINE LEARNING

LABORATORY MANUAL

Machine learning

Machine learning is a subset of artificial intelligence in the field of computer science that often

uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve

performance on a specific task) with data, without being explicitly programmed. In the past

decade, machine learning has given us self-driving cars, practical speech recognition, effective

web search, and a vastly improved understanding of the human genome.

Machine learning tasks

Machine learning tasks are typically classified into two broad categories, depending on whether

there is a learning "signal" or "feedback" available to a learning system:

Supervised learning: The computer is presented with example inputs and their desired outputs,

given by a "teacher", and the goal is to learn a general rule that maps inputs to outputs. As

special cases, the input signal can be only partially available, or restricted to special feedback:

Semi-supervised learning: the computer is given only an incomplete training signal: a training set

with some (often many) of the target outputs missing.

Active learning: the computer can only obtain training labels for a limited set of instances (based

on a budget), and also has to optimize its choice of objects to acquire labels for. When used

interactively, these can be presented to the user for labeling.

Reinforcement learning: training data (in form of rewards and punishments) is given only as

feedback to the program's actions in a dynamic environment, such as driving a vehicle or playing

a game against an opponent.

Unsupervised learning: No labels are given to the learning algorithm, leaving it on its own to find

structure in its input. Unsupervised learning can be a goal in itself (discovering hidden patterns in

data) or a means towards an end (feature learning).

Supervised learning Un Supervised learning Instance based
learning

Find-s algorithm EM algorithm

Locally weighted

Regression algorithm

Candidate elimination algorithm

K means algorithm

Decision tree algorithm
Back propagation Algorithm
Naïve Bayes Algorithm

K nearest neighbour

algorithm(lazy learning
algorithm)

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Semi-supervised_learning
https://en.wikipedia.org/wiki/Active_learning_(machine_learning)
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Autonomous_car
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Feature_learning

Machine learning applications

In classification, inputs are divided into two or more classes, and the learner must produce a model

that assigns unseen inputs to one or more (multi-label classification) of these classes. This is

typically tackled in a supervised manner. Spam filtering is an example of classification, where the

inputs are email (or other) messages and the classes are "spam" and "not spam". In regression, also

a supervised problem, the outputs are continuous rather than discrete.

In clustering, a set of inputs is to be divided into groups. Unlike in classification, the groups are

not known beforehand, making this typically an unsupervised task. Density estimation finds the

distribution of inputs in some space. Dimensionality reduction simplifies inputs by mapping them

into a lower- dimensional space. Topic modeling is a related problem, where a program is given

a list of human language documents and is tasked with finding out which documents cover similar

topics.

Machine learning Approaches

Decision tree learning: Decision tree learning uses a decision tree as a predictive model, which maps

observations about an item to conclusions about the item's target value. Association rule learning

Association rule learning is a method for discovering interesting relations between variables in large

databases.

Artificial neural networks

An artificial neural network (ANN) learning algorithm, usually called "neural network" (NN), is

a learning algorithm that is vaguely inspired by biological neural networks. Computations are

structured in terms of an interconnected group of artificial neurons, processing information using

a connectionist approach to computation. Modern neural networks are non-linear statistical data

modeling tools. They are usually used to model complex relationships between inputs and outputs,

to find patterns in data, or to capture the statistical structure in an unknown joint probability

distribution between observed variables.

Deep learning

Falling hardware prices and the development of GPUs for personal use in the last few years have

contributed to the development of the concept of deep learning which consists of multiple hidden

layers in an artificial neural network. This approach tries to model the way the human brain

processes light and sound into vision and hearing. Some successful applications of deep learning

are computer vision and speech recognition.

Inductive logic programming

Inductive logic programming (ILP) is an approach to rule learning using logic programming as a

uniform representation for input examples, background knowledge, and hypotheses. Given an

encoding of the known background knowledge and a set of examples represented as a logical

database of facts, an ILP system will derive a hypothesized logic program that entails all positive

and no negative examples. Inductive programming is a related field that considers any kind of

programming languages for representing hypotheses (and not only logic programming), such as

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Multi-label_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Topic_modeling
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Predictive_modelling
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Biological_neural_networks
https://en.wikipedia.org/wiki/Biological_neural_networks
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Connectionism
https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Non-linear
https://en.wikipedia.org/wiki/Non-linear
https://en.wikipedia.org/wiki/Data_modeling
https://en.wikipedia.org/wiki/Data_modeling
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Entailment
https://en.wikipedia.org/wiki/Inductive_programming
https://en.wikipedia.org/wiki/Inductive_programming

functional programs.

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming

Support vector machines

Support vector machines (SVMs) are a set of related supervised learning methods used for

classification and regression. Given a set of training examples, each marked as belonging to one

of two categories, an SVM training algorithm builds a model that predicts whether a new example

falls into one category or the other.

Clustering

Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that

observations within the same cluster are similar according to some pre designated criterion or

criteria, while observations drawn from different clusters are dissimilar. Different clustering

techniques make different assumptions on the structure of the data, often defined by some

similarity metric and evaluated for example by internal compactness (similarity between members

of the same cluster) and separation between different clusters. Other methods are based on

estimated density and graph connectivity. Clustering is a method of unsupervised learning, and a

common technique for statistical data analysis.

Bayesian networks

A Bayesian network, belief network or directed acyclic graphical model is a probabilistic graphical

model that represents a set of random variables and their conditional independencies via a directed

acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic

relationships between diseases and symptoms. Given symptoms, the network can be used to

compute the probabilities of the presence of various diseases. Efficient algorithms exist that

perform inference and learning.

Reinforcement learning

Reinforcement learning is concerned with how an agent ought to take actions in an environment

so as to maximize some notion of long-term reward. Reinforcement learning algorithms attempt

to find a policy that maps states of the world to the actions the agent ought to take in those states.

Reinforcement learning differs from the supervised learning problem in that correct input/output

pairs are never presented, nor sub-optimal actions explicitly corrected.

Similarity and metric learning

In this problem, the learning machine is given pairs of examples that are considered similar and

pairs of less similar objects. It then needs to learn a similarity function (or a distance metric

function) that can predict if new objects are similar. It is sometimes used in Recommendation

systems.

Genetic algorithms

A genetic algorithm (GA) is a search heuristic that mimics the process of natural selection, and

uses methods such as mutation and crossover to generate new genotype in the hope of finding

good solutions to a given problem. In machine learning, genetic algorithms found some uses in

the 1980s and 1990s. Conversely, machine learning techniques have been used to improve the

performance of genetic and evolutionary algorithms.

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Conditional_independence
https://en.wikipedia.org/wiki/Conditional_independence
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Inference
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Recommendation_systems
https://en.wikipedia.org/wiki/Recommendation_systems
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
https://en.wikipedia.org/wiki/Evolutionary_algorithm

Rule-based machine learning

Rule-based machine learning is a general term for any machine learning method that identifies,

learns, or evolves "rules" to store, manipulate or apply, knowledge. The defining characteristic of

a rule-based machine learner is the identification and utilization of a set of relational rules that

collectively represent the knowledge captured by the system. This is in contrast to other machine

learners that commonly identify a singular model that can be universally applied to any instance

in order to make a prediction. Rule-based machine learning approaches include learning classifier

systems, association rule learning, and artificial immune systems.

Feature selection approach

Feature selection is the process of selecting an optimal subset of relevant features for use in model

construction. It is assumed the data contains some features that are either redundant or irrelevant,

and can thus be removed to reduce calculation cost without incurring much loss of information.

Common optimality criteria include accuracy, similarity and information measures.

https://en.wikipedia.org/wiki/Rule-based_machine_learning
https://en.wikipedia.org/wiki/Learning_classifier_system
https://en.wikipedia.org/wiki/Learning_classifier_system
https://en.wikipedia.org/wiki/Learning_classifier_system
https://en.wikipedia.org/wiki/Learning_classifier_system
https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Artificial_immune_system
https://en.wikipedia.org/wiki/Feature_selection

MACHINE LEARNING LABORATORY

[As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2016 -2017) SEMESTER – VII

Subject Code 15CSL76 IA Marks 20

Number of Lecture Hours/Week 01I + 02P Exam Marks 80

Total Number of Lecture Hours 40 Exam Hours 03

CREDITS – 02

Course objectives: This course will enable students to

1. Make use of Data sets in implementing the machine learning algorithms

2. Implement the machine learning concepts and algorithms in any suitable language
of choice.

Description (If any):

1. The programs can be implemented in either JAVA or Python.

2. For Problems 1 to 6 and 10, programs are to be developed without using the built-

in classes or APIs of Java/Python.

3. Data sets can be taken from standard repositories
(https://archive.ics.uci.edu/ml/datasets.html) or constructedby the students.

Lab Experiments:

1. Implement and demonstratethe FIND-Salgorithm for finding the most specific

hypothesis based on a given set of training data samples. Read the training data from a

.CSV file.

2. For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Candidate-Elimination algorithmto output a description of the set of all
hypotheses consistent with the training examples.

3. Write a program to demonstrate the working of the decision tree based ID3 algorithm.

Use an appropriate data set for building the decision tree and apply this knowledge

toclassify a new sample.

4. Build an Artificial Neural Network by implementing the Backpropagation algorithm

and test the same using appropriate data sets.

5. Write a program to implement the naïve Bayesian classifier for a sample training data

set stored as a .CSV file. Compute the accuracy of the classifier, considering few test

data sets.

6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier

model to perform this task. Built-in Java classes/API can be used to write the program.

Calculate the accuracy, precision, and recall for your data set.

7. Write a program to construct a Bayesian network considering medical data. Use this

model to demonstrate the diagnosis of heart patients using standard Heart Disease Data

Set. You can use Java/Python ML library classes/API.

8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set

for clustering using k-Means algorithm. Compare the results of these two algorithms

and comment on the quality of clustering. You can add Java/Python ML library

classes/API in the program.

9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data

set. Print both correct and wrong predictions. Java/Python ML library classes can be

used for this problem.

10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit

data points. Select appropriate data set for your experiment and draw graphs.

Study Experiment / Project:

Course outcomes: The students should be able to:

1. Understand the implementation procedures for the machine learning algorithms.
2. Design Java/Python programs for various Learning algorithms.

3. Applyappropriate data sets to the Machine Learning algorithms.

4. Identify and apply Machine Learning algorithms to solve real world problems.

Conduction of Practical Examination:

• All laboratory experiments are to be included for practical examination.
Students are allowed to pick one experiment from the lot.

• Strictly follow the instructions as printed on the cover page of answer script
Marks distribution: Procedure + Conduction + Viva:20 + 50 +10 (80)

• Change of experiment is allowed only once and marks allotted to the procedure
part to be made zero.

1. Implement and demonstrate the FIND-S algorithm for finding the most specific

hypothesis based on a given set of training data samples. Read the training data

from a .CSV file.

import csv

with open('tennis.csv', 'r') as f:

reader = csv.reader(f)

your_list = list(reader)

h = [['0', '0', '0', '0', '0', '0']]

for i in your_list:
print(i)

if i[-1] == "True":

j = 0

for x in i:
if x != "True":

if x != h[0][j] and h[0][j] == '0':

h[0][j] = x
elif x != h[0][j] and h[0][j] != '0':

h[0][j] = '?'
else:

pass

j = j + 1

print("Most specific hypothesis is")

print(h)

Output

'Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same',True

'Sunny', 'Warm', 'High', 'Strong', 'Warm', 'Same',True

'Rainy', 'Cold', 'High', 'Strong', 'Warm', 'Change',False

'Sunny', 'Warm', 'High', 'Strong', 'Cool', 'Change',True

Maximally Specific set

[['Sunny', 'Warm', '?', 'Strong', '?', '?']]

2. For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Candidate-Elimination algorithm to output a description of the set of all
hypotheses consistent with the training examples.

class Holder:
factors={} #Initialize an empty dictionary

attributes = () #declaration of dictionaries parameters with an arbitrary length

'''

Constructor of class Holder holding two parameters,

self refers to the instance of the class
'''

def init (self,attr): #

self.attributes = attr

for i in attr:

self.factors[i]=[]

def add_values(self,factor,values):

self.factors[factor]=values

class CandidateElimination:

Positive={} #Initialize positive empty dictionary

Negative={} #Initialize negative empty dictionary

def init (self,data,fact):
self.num_factors = len(data[0][0])

self.factors = fact.factors

self.attr = fact.attributes
self.dataset = data

def run_algorithm(self):

'''
Initialize the specific and general boundaries, and loop the dataset against the

algorithm
'''

G = self.initializeG()
S = self.initializeS()

'''

Programmatically populate list in the iterating variable trial_set

'''

count=0
for trial_set in self.dataset:

if self.is_positive(trial_set): #if trial set/example consists of positive examples

G = self.remove_inconsistent_G(G,trial_set[0]) #remove inconsitent data from
the general boundary

S_new = S[:] #initialize the dictionary with no key-value pair

print (S_new)

for s in S:

if not self.consistent(s,trial_set[0]):
S_new.remove(s)
generalization = self.generalize_inconsistent_S(s,trial_set[0])
generalization = self.get_general(generalization,G)

if generalization:

S_new.append(generalization)
S = S_new[:]

S = self.remove_more_general(S)

print(S)

else:#if it is negative

S = self.remove_inconsistent_S(S,trial_set[0]) #remove inconsitent data from

the specific boundary

G_new = G[:] #initialize the dictionary with no key-value pair (dataset can

take any value)

print (G_new)

for g in G:

if self.consistent(g,trial_set[0]):

G_new.remove(g)

specializations = self.specialize_inconsistent_G(g,trial_set[0])
specializationss = self.get_specific(specializations,S)

if specializations != []:

G_new += specializationss
G = G_new[:]

G = self.remove_more_specific(G)

print(G)

print (S)

print (G)

def initializeS(self):

''' Initialize the specific boundary '''

S = tuple(['-' for factor in range(self.num_factors)]) #6 constraints in the vector

return [S]

def initializeG(self):

''' Initialize the general boundary '''

G = tuple(['?' for factor in range(self.num_factors)]) # 6 constraints in the vector
return [G]

def is_positive(self,trial_set):

''' Check if a given training trial_set is positive '''
if trial_set[1] == 'Y':

return True

elif trial_set[1] == 'N':

return False
else:

raise TypeError("invalid target value")

def match_factor(self,value1,value2):

''' Check for the factors values match,

necessary while checking the consistency of

training trial_set with the hypothesis '''

if value1 == '?' or value2 == '?':
return True

elif value1 == value2 :
return True

return False

def consistent(self,hypothesis,instance):

''' Check whether the instance is part of the hypothesis '''

for i,factor in enumerate(hypothesis):

if not self.match_factor(factor,instance[i]):

return False

return True

def remove_inconsistent_G(self,hypotheses,instance):

''' For a positive trial_set, the hypotheses in G

inconsistent with it should be removed '''

G_new = hypotheses[:]

for g in hypotheses:

if not self.consistent(g,instance):

G_new.remove(g)
return G_new

def remove_inconsistent_S(self,hypotheses,instance):

''' For a negative trial_set, the hypotheses in S
inconsistent with it should be removed '''

S_new = hypotheses[:]

for s in hypotheses:

if self.consistent(s,instance):

S_new.remove(s)

return S_new

def remove_more_general(self,hypotheses):

''' After generalizing S for a positive trial_set, the hypothesis in S

general than others in S should be removed '''

S_new = hypotheses[:]

for old in hypotheses:

for new in S_new:

if old!=new and self.more_general(new,old):

S_new.remove[new]

return S_new

def remove_more_specific(self,hypotheses):

''' After specializing G for a negative trial_set, the hypothesis in G

specific than others in G should be removed '''
G_new = hypotheses[:]

for old in hypotheses:

for new in G_new:

if old!=new and self.more_specific(new,old):
G_new.remove[new]

return G_new

def generalize_inconsistent_S(self,hypothesis,instance):

''' When a inconsistent hypothesis for positive trial_set is seen in the specific

boundary S,

it should be generalized to be consistent with the trial_set ... we will get one
hypothesis'''

hypo = list(hypothesis) # convert tuple to list for mutability

for i,factor in enumerate(hypo):
if factor == '-':

hypo[i] = instance[i]

elif not self.match_factor(factor,instance[i]):

hypo[i] = '?'

generalization = tuple(hypo) # convert list back to tuple for immutability
return generalization

def specialize_inconsistent_G(self,hypothesis,instance):

''' When a inconsistent hypothesis for negative trial_set is seen in the general

boundary G

should be specialized to be consistent with the trial_set.. we will get a set of

hypotheses '''
specializations = []

hypo = list(hypothesis) # convert tuple to list for mutability

for i,factor in enumerate(hypo):
if factor == '?':

values = self.factors[self.attr[i]]

for j in values:

if instance[i] != j:

hyp=hypo[:]

hyp[i]=j

hyp=tuple(hyp) # convert list back to tuple for immutability

specializations.append(hyp)

return specializations

def get_general(self,generalization,G):
''' Checks if there is more general hypothesis in G

for a generalization of inconsistent hypothesis in S

in case of positive trial_set and returns valid generalization '''

for g in G:

if self.more_general(g,generalization):

return generalization
return None

def get_specific(self,specializations,S):

''' Checks if there is more specific hypothesis in S

for each of hypothesis in specializations of an
inconsistent hypothesis in G in case of negative trial_set

and return the valid specializations'''
valid_specializations = []

for hypo in specializations:
for s in S:

if self.more_specific(s,hypo) or s==self.initializeS()[0]:

valid_specializations.append(hypo)
return valid_specializations

def exists_general(self,hypothesis,G):

'''Used to check if there exists a more general hypothesis in

general boundary for version space'''

for g in G:

if self.more_general(g,hypothesis):

return True
return False

def exists_specific(self,hypothesis,S):

'''Used to check if there exists a more specific hypothesis in
general boundary for version space'''

for s in S:

if self.more_specific(s,hypothesis):

return True

return False

def more_general(self,hyp1,hyp2):

''' Check whether hyp1 is more general than hyp2 '''
hyp = zip(hyp1,hyp2)

for i,j in hyp:

if i == '?':
continue

elif j == '?':

if i != '?':

return False

elif i != j:

return False
else:

continue

return True

def more_specific(self,hyp1,hyp2):

''' hyp1 more specific than hyp2 is

equivalent to hyp2 being more general than hyp1 '''

return self.more_general(hyp2,hyp1)

dataset=[(('sunny','warm','normal','strong','warm','same'),'Y'),(('sunny','warm','high','stron

g','warm','same'),'Y'),(('rainy','cold','high','strong','warm','change'),'N'),(('sunny','warm','hi
gh','strong','cool','change'),'Y')]

attributes =('Sky','Temp','Humidity','Wind','Water','Forecast')

f = Holder(attributes)

f.add_values('Sky',('sunny','rainy','cloudy')) #sky can be sunny rainy or cloudy

f.add_values('Temp',('cold','warm')) #Temp can be sunny cold or warm

f.add_values('Humidity',('normal','high')) #Humidity can be normal or high

f.add_values('Wind',('weak','strong')) #wind can be weak or strong

f.add_values('Water',('warm','cold')) #water can be warm or cold

f.add_values('Forecast',('same','change')) #Forecast can be same or change

a = CandidateElimination(dataset,f) #pass the dataset to the algorithm class and call the

run algoritm method
a.run_algorithm()

Output

[('sunny', 'warm', 'normal', 'strong', 'warm', 'same')]

[('sunny', 'warm', 'normal', 'strong', 'warm', 'same')]

[('sunny', 'warm', '?', 'strong', 'warm', 'same')]
[('?', '?', '?', '?', '?', '?')]
[('sunny', '?', '?', '?', '?', '?'), ('?', 'warm', '?', '?', '?', '?'), ('?', '?', '?', '?', '?', 'same')]

[('sunny', 'warm', '?', 'strong', 'warm', 'same')]

[('sunny', 'warm', '?', 'strong', '?', '?')]

[('sunny', 'warm', '?', 'strong', '?', '?')]

[('sunny', '?', '?', '?', '?', '?'), ('?', 'warm', '?', '?', '?', '?')]

3. Write a program to demonstrate the working of the decision tree based ID3 algorithm.
Use an appropriate data set for building the decision tree and apply this knowledge to
classify a new sample.

import numpy as np

import math

from data_loader import read_data

class Node:

def init (self, attribute):

self.attribute = attribute

self.children = []

self.answer = ""

def str (self):

return self.attribute

def subtables(data, col, delete):
dict = {}

items = np.unique(data[:, col])

count = np.zeros((items.shape[0], 1), dtype=np.int32)

for x in range(items.shape[0]):

for y in range(data.shape[0]):
if data[y, col] == items[x]:

count[x] += 1

for x in range(items.shape[0]):

dict[items[x]] = np.empty((int(count[x]), data.shape[1]), dtype="|S32")

pos = 0

for y in range(data.shape[0]):

if data[y, col] == items[x]:
dict[items[x]][pos] = data[y]
pos += 1

if delete:

dict[items[x]] = np.delete(dict[items[x]], col, 1)

return items, dict

def entropy(S):

items = np.unique(S)

if items.size == 1:

return 0

counts = np.zeros((items.shape[0], 1))

sums = 0

for x in range(items.shape[0]):

counts[x] = sum(S == items[x]) / (S.size * 1.0)

for count in counts:

sums += -1 * count * math.log(count, 2)
return sums

def gain_ratio(data, col):

items, dict = subtables(data, col, delete=False)

total_size = data.shape[0]

entropies = np.zeros((items.shape[0], 1))

intrinsic = np.zeros((items.shape[0], 1))

for x in range(items.shape[0]):

ratio = dict[items[x]].shape[0]/(total_size * 1.0)

entropies[x] = ratio * entropy(dict[items[x]][:, -1])

intrinsic[x] = ratio * math.log(ratio, 2)

total_entropy = entropy(data[:, -1])

iv = -1 * sum(intrinsic)

for x in range(entropies.shape[0]):

total_entropy -= entropies[x]

return total_entropy / iv

def create_node(data, metadata):

if (np.unique(data[:, -1])).shape[0] == 1:

node = Node("")

node.answer = np.unique(data[:, -1])[0]

return node

gains = np.zeros((data.shape[1] - 1, 1))
for col in range(data.shape[1] - 1):

gains[col] = gain_ratio(data, col)

split = np.argmax(gains)

node = Node(metadata[split])

metadata = np.delete(metadata, split, 0)

items, dict = subtables(data, split, delete=True)

for x in range(items.shape[0]):

child = create_node(dict[items[x]], metadata)

node.children.append((items[x], child))

return node

def empty(size):

s = ""

for x in range(size):
s += " "

return s

def print_tree(node, level):

if node.answer != "":
print(empty(level), node.answer)

return

print(empty(level), node.attribute)

for value, n in node.children:

print(empty(level + 1), value)

print_tree(n, level + 2)

metadata, traindata = read_data("tennis.csv")
data = np.array(traindata)

node = create_node(data, metadata)
print_tree(node, 0)

Data_loader.py

import csv
def read_data(filename):

with open(filename, 'r') as csvfile:

datareader = csv.reader(csvfile, delimiter=',')

headers = next(datareader)
metadata = []
traindata = []

for name in headers:
metadata.append(name)

for row in datareader:
traindata.append(row)

return (metadata, traindata)

Tennis.csv

outlook,temperature,humidity,wind,

answer sunny,hot,high,weak,no

sunny,hot,high,strong,no

overcast,hot,high,weak,yes

rain,mild,high,weak,yes

rain,cool,normal,weak,yes

rain,cool,normal,strong,no

overcast,cool,normal,strong,yes

sunny,mild,high,weak,no

sunny,cool,normal,weak,yes

rain,mild,normal,weak,yes

sunny,mild,normal,strong,yes

overcast,mild,high,strong,yes

overcast,hot,normal,weak,yes

rain,mild,high,strong,no

Output

outlook

overcast

b'yes'
rain

wind

b'strong'

b'no'

b'weak'

b'yes'
sunny

humidity
b'high'

b'no'

b'normal'

b'yes

4. Build an Artificial Neural Network by implementing the Backpropagation
algorithm and test the same using appropriate data sets.

import numpy as np

X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)

X = X/np.amax(X,axis=0) # maximum of X array longitudinally

y = y/100

#Sigmoid Function

def sigmoid (x):
return 1/(1 + np.exp(-x))

#Derivative of Sigmoid Function
def derivatives_sigmoid(x):

return x * (1 - x)

#Variable initialization

epoch=7000 #Setting training iterations
lr=0.1 #Setting learning rate

inputlayer_neurons = 2 #number of features in data set

hiddenlayer_neurons = 3 #number of hidden layers neurons

output_neurons = 1 #number of neurons at output layer

#weight and bias initialization

wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))

bh=np.random.uniform(size=(1,hiddenlayer_neurons))

wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))

bout=np.random.uniform(size=(1,output_neurons))

#draws a random range of numbers uniformly of dim x*y

for i in range(epoch):

#Forward Propogation

hinp1=np.dot(X,wh)
hinp=hinp1 + bh

hlayer_act = sigmoid(hinp)

outinp1=np.dot(hlayer_act,wout)

outinp= outinp1+ bout
output = sigmoid(outinp)

#Backpropagation

EO = y-output
outgrad = derivatives_sigmoid(output)

d_output = EO* outgrad
EH = d_output.dot(wout.T)

hiddengrad = derivatives_sigmoid(hlayer_act)#how much hidden layer wts

contributed to error

d_hiddenlayer = EH * hiddengrad

wout += hlayer_act.T.dot(d_output) *lr# dotproduct of nextlayererror and

currentlayerop

bout += np.sum(d_output, axis=0,keepdims=True) *lr

wh += X.T.dot(d_hiddenlayer) *lr

#bh += np.sum(d_hiddenlayer, axis=0,keepdims=True) *lr

print("Input: \n" + str(X))
print("Actual Output: \n" + str(y))

print("Predicted Output: \n" ,output)

output
Input:
[[0.66666667 1.]

[0.33333333 0.55555556]

[1. 0.66666667]]

Actual Output:
[[0.92]

[0.86]
[0.89]]

Predicted Output:

[[0.89559591]

[0.88142069]

[0.8928407]]

5. Write a program to implement the naïve Bayesian classifier for a sample training data
set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data
sets.

import csv
import random
import math

def loadCsv(filename):

lines = csv.reader(open(filename, "r"));

dataset = list(lines)
for i in range(len(dataset)):

#converting strings into numbers for processing
dataset[i] = [float(x) for x in dataset[i]]

return dataset

def splitDataset(dataset, splitRatio):
#67% training size

trainSize = int(len(dataset) * splitRatio);
trainSet = []

copy = list(dataset);

while len(trainSet) < trainSize:

#generate indices for the dataset list randomly to pick ele for training data

index = random.randrange(len(copy));

trainSet.append(copy.pop(index))
return [trainSet, copy]

def separateByClass(dataset):
separated = {}

#creates a dictionary of classes 1 and 0 where the values are the instacnes belonging to
each class

for i in range(len(dataset)):
vector = dataset[i]

if (vector[-1] not in separated):

separated[vector[-1]] = []
separated[vector[-1]].append(vector)

return separated

def mean(numbers):
return sum(numbers)/float(len(numbers))

def stdev(numbers):
avg = mean(numbers)

variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)

def summarize(dataset):

summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)];
del summaries[-1]
return summaries

def summarizeByClass(dataset):

separated = separateByClass(dataset);
summaries = {}
for classValue, instances in separated.items():

#summaries is a dic of tuples(mean,std) for each class value
summaries[classValue] = summarize(instances)

return summaries

def calculateProbability(x, mean, stdev):

exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

def calculateClassProbabilities(summaries, inputVector):
probabilities = {}

for classValue, classSummaries in summaries.items():#class and attribute information
as mean and sd

probabilities[classValue] = 1

for i in range(len(classSummaries)):

mean, stdev = classSummaries[i] #take mean and sd of every attribute

for class 0 and 1 seperaely

x = inputVector[i] #testvector's first attribute

probabilities[classValue] *= calculateProbability(x, mean, stdev);#use
normal dist

return probabilities

def predict(summaries, inputVector):

probabilities = calculateClassProbabilities(summaries, inputVector)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.items():#assigns that class which has he

highest prob

if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue

return bestLabel

def getPredictions(summaries, testSet):
predictions = []
for i in range(len(testSet)):

result = predict(summaries, testSet[i])

predictions.append(result)

return predictions

def getAccuracy(testSet, predictions):
correct = 0

for i in range(len(testSet)):

if testSet[i][-1] == predictions[i]:
correct += 1

return (correct/float(len(testSet))) * 100.0

def main():

filename = '5data.csv'

splitRatio = 0.67

dataset = loadCsv(filename);

trainingSet, testSet = splitDataset(dataset, splitRatio)

print('Split {0} rows into train={1} and test={2} rows'.format(len(dataset),

len(trainingSet), len(testSet)))
prepare model

summaries = summarizeByClass(trainingSet);

test model

predictions = getPredictions(summaries, testSet)

accuracy = getAccuracy(testSet, predictions)

print('Accuracy of the classifier is : {0}%'.format(accuracy))

main()

Output

confusion matrix is as

follows [[17 0 0]
[0 17 0]

[0 0 11]]
Accuracy metrics

precision recall f1-score support

0

1

2

avg / total

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00 17

1.00 17

1.00 11

1.00 45

6. Assuming a set of documents that need to be classified, use the naïve Bayesian
Classifier model to perform this task. Built-in Java classes/API can be used to write
the program. Calculate the accuracy, precision, and recall for your data set.

import pandas as pd

msg=pd.read_csv('naivetext1.csv',names=['message','label'])

print('The dimensions of the dataset',msg.shape)

msg['labelnum']=msg.label.map({'pos':1,'neg':0})

X=msg.message

y=msg.labelnum

print(X)

print(y)

#splitting the dataset into train and test data

from sklearn.model_selection import train_test_split

xtrain,xtest,ytrain,ytest=train_test_split(X,y)

print(xtest.shape)

print(xtrain.shape)
print(ytest.shape)

print(ytrain.shape)
#output of count vectoriser is a sparse matrix

from sklearn.feature_extraction.text import CountVectorizer

count_vect = CountVectorizer()

xtrain_dtm = count_vect.fit_transform(xtrain)

xtest_dtm=count_vect.transform(xtest)

print(count_vect.get_feature_names())

df=pd.DataFrame(xtrain_dtm.toarray(),columns=count_vect.get_feature_names())
print(df)#tabular representation

print(xtrain_dtm) #sparse matrix representation

Training Naive Bayes (NB) classifier on training data.
from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB().fit(xtrain_dtm,ytrain)

predicted = clf.predict(xtest_dtm)

#printing accuracy metrics

from sklearn import metrics

print('Accuracy metrics')

print('Accuracy of the classifer is',metrics.accuracy_score(ytest,predicted))

print('Confusion matrix')

print(metrics.confusion_matrix(ytest,predicted))

print('Recall and Precison ')

print(metrics.recall_score(ytest,predicted))

print(metrics.precision_score(ytest,predicted))

'''docs_new = ['I like this place', 'My boss is not my saviour']

X_new_counts = count_vect.transform(docs_new)

predictednew = clf.predict(X_new_counts)
for doc, category in zip(docs_new, predictednew):

print('%s->%s' % (doc, msg.labelnum[category]))'''

I love this sandwich,pos

This is an amazing place,pos

I feel very good about these beers,pos

This is my best work,pos
What an awesome view,pos

I do not like this restaurant,neg

I am tired of this stuff,neg

I can't deal with this,neg
He is my sworn enemy,neg

My boss is horrible,neg
This is an awesome place,pos

I do not like the taste of this juice,neg

I love to dance,pos

I am sick and tired of this place,neg

What a great holiday,pos

That is a bad locality to stay,neg

We will have good fun tomorrow,pos

I went to my enemy's house today,neg

OUTPUT

['about', 'am', 'amazing', 'an', 'and', 'awesome', 'beers', 'best', 'boss', 'can', 'deal',
'do', 'enemy', 'feel', 'fun', 'good', 'have', 'horrible', 'house', 'is', 'like', 'love', 'my',

'not', 'of', 'place', 'restaurant', 'sandwich', 'sick', 'stuff', 'these', 'this', 'tired', 'to',

'today', 'tomorrow', 'very', 'view', 'we', 'went', 'what', 'will', 'with', 'work']

about am amazing an and awesome beers best boss can ... today \
0 1 0 0 0 0 0 1 0 0 0 ... 0

1 0 0 0 0 0 0 0 1 0 0 ... 0

2 0 0 1 1 0 0 0 0 0 0 ... 0

3 0 0 0 0 0 0 0 0 0 0 ... 1

4 0 0 0 0 0 0 0 0 0 0 ... 0

5 0 1 0 0 1 0 0 0 0 0 ... 0
6 0 0 0 0 0 0 0 0 0 1 ... 0

7 0 0 0 0 0 0 0 0 0 0 ... 0

8 0 1 0 0 0 0 0 0 0 0 ... 0
9 0 0 0 1 0 1 0 0 0 0 ... 0
10 0 0 0 0 0 0 0 0 0 0 ... 0

11 0 0 0 0 0 0 0 0 1 0 ... 0
12 0 0 0 1 0 1 0 0 0 0 ... 0

tomorrow very view we went what will with work
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 1 0

7 1 0 0 1 0 0 1 0 0
8 0 0 0 0 0 0 0 0 0

7. Write a program to construct a Bayesian network considering medical data. Use

this model to demonstrate the diagnosis of heart patients using standard Heart

Disease Data Set. You can use Java/Python ML library classes/API.

From pomegranate import*
Asia=DiscreteDistribution({ „True‟:0.5, „False‟:0.5 })
Tuberculosis=ConditionalProbabilityTable(

[[„True‟, „True‟, 0.2],

[„True‟, „False‟, 0.8],

[„False‟, „True‟, 0.01],

[„False‟, „False‟, 0.98]], [asia])

Smoking = DiscreteDistribution({ „True‟:0.5, „False‟:0.5 })
Lung = ConditionalProbabilityTable(
[[„True‟, „True‟, 0.75],

[„True‟, „False‟,0.25].

[„False‟, „True‟, 0.02],

[„False‟, „False‟, 0.98]], [smoking])

Bronchitis = ConditionalProbabilityTable(
[[„True‟, „True‟, 0.92],

[„True‟, „False‟,0.08].
[„False‟, „True‟,0.03],
[„False‟, „False‟, 0.98]], [smoking])

Tuberculosis_or_cancer = ConditionalProbabilityTable(
[[„True‟, „True‟, „True‟, 1.0],

[„True‟, „True‟, „False‟, 0.0],
[„True‟, „False‟, „True‟, 1.0],

[„True‟, „False‟, „False‟, 0.0],
[„False‟, „True‟, „True‟, 1.0],

[„False‟, „True‟, „False‟, 0.0],
[„False‟, „False‟ „True‟, 1.0],

[„False‟, „False‟, „False‟, 0.0]], [tuberculosis, lung])

Xray = ConditionalProbabilityTable(

[[„True‟, „True‟, 0.885],

[„True‟, „False‟, 0.115],

[„False‟, „True‟, 0.04],

[„False‟, „False‟, 0.96]], [tuberculosis_or_cancer])
dyspnea = ConditionalProbabilityTable(
[[„True‟, „True‟, „True‟, 0.96],

[„True‟, „True‟, „False‟, 0.04],

[„True‟, „False‟, „True‟, 0.89],

[„True‟, „False‟, „False‟, 0.11],

[„False‟, „True‟, „True‟, 0.96],

[„False‟, „True‟, „False‟, 0.04],

[„False‟, „False‟ „True‟, 0.89],

[„False‟, „False‟, „False‟, 0.11]], [tuberculosis_or_cancer, bronchitis])

s0 = State(asia, name=”asia”)

s1 = State(tuberculosis, name=” tuberculosis”)
s2 = State(smoking, name=” smoker”)

network = BayesianNetwork(“asia”)

network.add_nodes(s0,s1,s2)

network.add_edge(s0,s1)

network.add_edge(s1.s2)

network.bake()

print(network.predict_probal({„tuberculosis‟: „True‟}))

8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data

set for clustering using k-Means algorithm. Compare the results of these two

algorithms and comment on the quality of clustering. You can add Java/Python ML

library classes/API in the program.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets.samples_generator import make_blobs

X, y_true = make_blobs(n_samples=100, centers =

4,Cluster_std=0.60,random_state=0)

X = X[:, ::-1]

#flip axes for better plotting

from sklearn.mixture import GaussianMixture

gmm = GaussianMixture (n_components = 4).fit(X)

lables = gmm.predict(X)

plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap=‟viridis‟);

probs = gmm.predict_proba(X)
print(probs[:5].round(3))

size = 50 * probs.max(1) ** 2 # square emphasizes differences

plt.scatter(X[:, 0], X[:, 1], c=labels, cmap=‟viridis‟, s=size);

from matplotlib.patches import Ellipse

def draw_ellipse(position, covariance, ax=None, **kwargs);

“””Draw an ellipse with a given position and covariance”””
Ax = ax or plt.gca()
Convert covariance to principal axes

if covariance.shape ==(2,2):

U, s, Vt = np.linalg.svd(covariance)

Angle = np.degrees(np.arctan2(U[1, 0], U[0,0]))

Width, height = 2 * np.sqrt(s)
else:

angle = 0

width, height = 2 * np.sqrt(covariance)

#Draw the Ellipse

for nsig in range(1,4):

ax.add_patch(Ellipse(position, nsig * width, nsig *height,

angle, **kwargs))

def plot_gmm(gmm, X, label=True, ax=None):
ax = ax or plt.gca()

labels = gmm.fit(X).predict(X)

if label:

ax.scatter(X[:, 0], x[:, 1], c=labels, s=40, cmap=‟viridis‟, zorder=2)
else:

ax.scatter(X[:, 0], x[:, 1], s=40, zorder=2)
ax.axis(„equal‟)

w_factor = 0.2 / gmm.weights_.max()

for pos, covar, w in zip(gmm.means_, gmm.covariances_, gmm.weights_):
draw_ellipse(pos, covar, alpha=w * w_factor)

gmm = GaussianMixture(n_components=4, random_state=42)
plot_gmm(gmm, X)

gmm = GaussianMixture(n_components=4, covariance_type=‟full‟,

random_state=42)
plot_gmm(gmm, X)

Output

[[1 ,0, 0, 0]

[0 ,0, 1, 0]

[1 ,0, 0, 0]

[1 ,0, 0, 0]

[1 ,0, 0, 0]]

K-means

from sklearn.cluster import KMeans

#from sklearn import metrics
import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

data=pd.read_csv("kmeansdata.csv")

df1=pd.DataFrame(data)

print(df1)

f1 = df1['Distance_Feature'].values
f2 = df1['Speeding_Feature'].values

X=np.matrix(list(zip(f1,f2)))
plt.plot()

plt.xlim([0, 100])

plt.ylim([0, 50])

plt.title('Dataset')

plt.ylabel('speeding_feature')

plt.xlabel('Distance_Feature')

plt.scatter(f1,f2)

plt.show()

create new plot and data
plt.plot()

colors = ['b', 'g', 'r']

markers = ['o', 'v', 's']

KMeans algorithm
#K = 3

kmeans_model = KMeans(n_clusters=3).fit(X)

plt.plot()
for i, l in enumerate(kmeans_model.labels_):

plt.plot(f1[i], f2[i], color=colors[l], marker=markers[l],ls='None')

plt.xlim([0, 100])

plt.ylim([0, 50])

plt.show()

Driver_ID,Distance_Feature,Speeding_Feature

3423311935,71.24,28

3423313212,52.53,25
3423313724,64.54,27

3423311373,55.69,22
3423310999,54.58,25

3423313857,41.91,10

3423312432,58.64,20

3423311434,52.02,8

3423311328,31.25,34
3423312488,44.31,19
3423311254,49.35,40
3423312943,58.07,45
3423312536,44.22,22

3423311542,55.73,19

3423312176,46.63,43

3423314176,52.97,32

3423314202,46.25,35

3423311346,51.55,27

3423310666,57.05,26

3423313527,58.45,30

3423312182,43.42,23

3423313590,55.68,37

3423312268,55.15,18

9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris

data set. Print both correct and wrong predictions. Java/Python ML library classes

can be used for this problem.

import csv
import random
import math
import operator

def loadDataset(filename, split, trainingSet=[] , testSet=[]):

with open(filename, 'rb') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)

for x in range(len(dataset)-1):

for y in range(4):

dataset[x][y] = float(dataset[x][y])

if random.random() < split:
trainingSet.append(dataset[x])

else:
testSet.append(dataset[x])

def euclideanDistance(instance1, instance2, length):
distance = 0
for x in range(length):

distance += pow((instance1[x] - instance2[x]), 2)

return math.sqrt(distance)

def getNeighbors(trainingSet, testInstance, k):

distances = []

length = len(testInstance)-1
for x in range(len(trainingSet)):

dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x], dist))

distances.sort(key=operator.itemgetter(1))
neighbors = []

for x in range(k):

neighbors.append(distances[x][0])
return neighbors

def getResponse(neighbors):

classVotes = {}

for x in range(len(neighbors)):
response = neighbors[x][-1]

if response in classVotes:
classVotes[response] += 1

else:

classVotes[response] = 1

sortedVotes =

sorted(classVotes.iteritems(),
reverse=True)

return sortedVotes[0][0]

def getAccuracy(testSet,

predictions): correct = 0
for x in
range(len(testSet)):
key=operator.itemgetter(1
),

if testSet[x][-1] == predictions[x]:
correct += 1

return (correct/float(len(testSet))) * 100.0

def main():

prepare

data

trainingSet=

[] testSet=[]

split = 0.67

loadDataset('knndat.data', split, trainingSet,
testSet) print('Train set: ' + repr(len(trainingSet)))
print('Test set: ' + repr(len(testSet)))

generate

predictions

predictions=[]

k=3
for x in range(len(testSet)):

neighbors = getNeighbors(trainingSet, testSet[x],

k) result = getResponse(neighbors)

predictions.append(result)
print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-

1])) accuracy = getAccuracy(testSet, predictions)

print('Accuracy: ' + repr(accuracy) +

'%') main()

OUTPUT

Confusion matrix is as follows

[[11 0 0]

[0 9 1]

[0 1 8]]

Accuracy metrics

0 1.00 1.00 1.00 11

1 0.90 0.90 0.90 10

2 0.89 0.89 0,89 9

Avg/Total 0.93 0.93 0.93 30

10. Implement the non-parametric Locally Weighted Regression algorithm in order
to fit data points. Select appropriate data set for your experiment and draw graphs.

from numpy import *
import operator

from os import listdir

import matplotlib

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np1

import numpy.linalg as np
from scipy.stats.stats import pearsonr

def kernel(point,xmat, k):

m,n = np1.shape(xmat)

weights = np1.mat(np1.eye((m)))

for j in range(m):
diff = point - X[j]

weights[j,j] = np1.exp(diff*diff.T/(-2.0*k**2))

return weights

def localWeight(point,xmat,ymat,k):

wei = kernel(point,xmat,k)

W=(X.T*(wei*X)).I*(X.T*(wei*ymat.T))
return W

def localWeightRegression(xmat,ymat,k):

m,n = np1.shape(xmat)

ypred = np1.zeros(m)
for i in range(m):

ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
return ypred

load data points

data = pd.read_csv('data10.csv')

bill = np1.array(data.total_bill)

tip = np1.array(data.tip)

#preparing and add 1 in bill

mbill = np1.mat(bill)

mtip = np1.mat(tip)
m= np1.shape(mbill)[1]

one = np1.mat(np1.ones(m))

X= np1.hstack((one.T,mbill.T))

#set k here

ypred = localWeightRegression(X,mtip,2)

SortIndex = X[:,1].argsort(0)

xsort = X[SortIndex][:,0]

Output

Viva Questions

1. What is machine learning?

2. Define supervised learning

3. Define unsupervised learning

4. Define semi supervised learning

5. Define reinforcement learning

6. What do you mean by hypotheses

7. What is classification

8. What is clustering

9. Define precision, accuracy and recall

10.Define entropy

11. Define regression

12. How Knn is different from k-means clustering

13. What is concept learning

14. Define specific boundary and general boundary

15.Define target function

16.Define decision tree

17.What is ANN

18.Explain gradient descent approximation

19.State Bayes theorem

20.Define Bayesian belief networks

21.Differentiate hard and soft clustering

22. Define variance

23. What is inductive machine learning

24. Why K nearest neighbour algorithm is lazy learningalgorithm

25. Why naïve Bayes is naïve

26.Mention classification algorithms

27.Define pruning

28.Differentiate Clustering and classification

29.Mention clustering algorithms

30.Define Bias

	Machine learning
	Machine learning tasks
	Machine learning applications
	Machine learning Approaches
	Artificial neural networks
	Deep learning
	Inductive logic programming
	Clustering
	Bayesian networks
	Reinforcement learning
	Similarity and metric learning
	Genetic algorithms
	Feature selection approach
	MACHINE LEARNING LABORATORY
	CREDITS – 02
	Description (If any):
	Lab Experiments:
	Study Experiment / Project:
	Conduction of Practical Examination:
	1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
	Output
	[['Sunny', 'Warm', '?', 'Strong', '?', '?']]
	Output
	3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
	Data_loader.py
	Tennis.csv
	Output
	4. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
	output
	5. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
	Output
	6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
	OUTPUT
	7. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
	8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML librar...
	#flip axes for better plotting
	# Convert covariance to principal axes
	#Draw the Ellipse
	Output
	Driver_ID,Distance_Feature,Speeding_Feature
	9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
	OUTPUT

