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Machine learning 

Machine learning is a subset of artificial intelligence in the  field  of  computer  science that often 

uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve 

performance on a specific task) with data, without being explicitly programmed. In the past 

decade, machine learning has given us self-driving cars, practical speech recognition, effective 

web search, and a vastly improved understanding of the human genome. 

 

Machine learning tasks 

Machine learning tasks are typically classified into two broad categories, depending on whether 

there is a learning "signal" or "feedback" available to a learning system: 

Supervised learning: The computer is presented with example inputs and their desired outputs, 

given by a "teacher",  and  the  goal  is  to  learn  a  general  rule  that  maps inputs to outputs.  As 

special cases, the input signal can be only partially available, or restricted to special feedback: 

Semi-supervised learning: the computer is given only an incomplete training signal: a training set 

with some (often many) of the target outputs missing. 

Active learning: the computer can only obtain training labels for a limited set of instances (based 

on a budget), and also has to optimize its choice of objects to acquire labels for. When used 

interactively, these can be presented to the user for labeling. 

Reinforcement learning: training data (in form of rewards and punishments) is given only as 

feedback to the program's actions in a dynamic environment, such as  driving a vehicle or playing 

a game against an opponent. 

Unsupervised learning: No labels are given to the learning algorithm, leaving it on its own to find 

structure in its input. Unsupervised learning can be a goal in itself (discovering hidden patterns in 

data) or a means towards an end (feature learning). 

 

 

 
 

Supervised learning Un Supervised learning Instance based 
learning 

Find-s algorithm EM algorithm  

 

Locally weighted 

Regression algorithm 

Candidate elimination algorithm  

 

K means algorithm 

Decision tree algorithm 
Back propagation Algorithm 
Naïve Bayes Algorithm 

K nearest neighbour 

algorithm(lazy learning 
algorithm) 
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Machine learning applications 

In classification, inputs are divided into two or more classes, and the learner must produce a model 

that assigns unseen inputs to one or more (multi-label classification) of these classes. This is 

typically tackled in a supervised manner. Spam filtering is an example of classification, where the 

inputs are email (or other) messages and the classes are "spam" and "not spam". In regression, also 

a supervised problem, the outputs are continuous rather than discrete. 

In clustering, a set of inputs is to be divided into groups. Unlike in classification, the groups are 

not known beforehand, making this typically an unsupervised task. Density estimation finds the 

distribution of inputs in some space. Dimensionality reduction simplifies inputs by mapping them 

into a lower- dimensional space. Topic modeling is a related problem, where a program is given 

a list of human language documents and is tasked with finding out which documents cover similar 

topics. 

Machine learning Approaches 
 

Decision tree learning: Decision tree learning uses a decision tree as a predictive model, which maps 

observations about an item to conclusions about the item's target value. Association rule learning 

Association rule learning is a method for discovering interesting relations between variables in large 

databases. 

Artificial neural networks 

 
An artificial neural network (ANN) learning algorithm, usually called "neural network" (NN), is 

a learning algorithm that is vaguely inspired by biological neural networks. Computations are 

structured in terms of an interconnected group of artificial neurons, processing information using 

a connectionist approach to computation. Modern neural networks are non-linear statistical data 

modeling tools. They are usually used to model complex relationships between inputs and outputs, 

to find patterns in data, or to capture the statistical structure in an unknown joint probability 

distribution between observed variables. 

Deep learning 

 
Falling hardware prices and the development of GPUs for personal use in the last few years have 

contributed to the development of the concept of deep learning which consists of multiple hidden 

layers in an artificial neural network. This approach tries to model the way the human brain 

processes light and sound into vision and hearing. Some successful applications of deep learning 

are computer vision and speech recognition. 

Inductive logic programming 

Inductive logic programming (ILP) is an approach to rule learning using logic programming as a 

uniform representation for input examples, background knowledge, and hypotheses. Given an 

encoding of the known background knowledge and a set of examples represented as a logical 

database of facts, an ILP system will derive a hypothesized logic program that entails all positive 

and no negative examples. Inductive programming is a related field that considers any kind of 

programming languages for representing hypotheses (and not only logic programming), such as 
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functional programs. 
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Support vector machines 
 

 

 

Support vector machines (SVMs) are a set of related supervised learning methods used for 

classification and regression. Given a set of training examples, each marked as belonging to one 

of two categories, an SVM training algorithm builds a model that predicts whether a new example 

falls into one category or the other. 

Clustering 

 
Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that 

observations within the same cluster are similar according to some pre designated criterion or 

criteria, while observations drawn from different clusters are dissimilar. Different clustering 

techniques make different assumptions on the structure of the data, often defined by some 

similarity metric and evaluated for example by internal compactness (similarity between members 

of the same cluster) and separation between different clusters. Other methods are  based on 

estimated density and graph connectivity. Clustering is a method of unsupervised learning, and a 

common technique for statistical data analysis. 

Bayesian networks 

 
A Bayesian network, belief network or directed acyclic graphical model is a probabilistic graphical 

model that represents a set of random variables and their conditional independencies via a directed 

acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic 

relationships between diseases and symptoms. Given symptoms, the network can be used to 

compute the probabilities of the presence of various diseases. Efficient algorithms exist that 

perform inference and learning. 

Reinforcement learning 

Reinforcement learning is concerned with how an agent ought to take actions  in  an environment 

so as to maximize some notion of long-term reward. Reinforcement learning algorithms attempt 

to find a policy that maps states of the world to the actions the agent ought to take in those states. 

Reinforcement learning differs from the supervised learning problem in that correct input/output 

pairs are never presented, nor sub-optimal actions explicitly corrected. 

Similarity and metric learning 

In this problem, the learning machine is given pairs of examples that are considered similar and 

pairs of less similar objects. It then needs to learn a similarity function (or a distance metric 

function) that can predict if new objects are similar. It is sometimes used in Recommendation 

systems. 

Genetic algorithms 

A genetic algorithm (GA) is a search heuristic that mimics the process of natural selection, and 

uses methods  such  as  mutation  and crossover to  generate new genotype in the hope of  finding 

good solutions to a given problem. In machine learning, genetic algorithms found some uses in 

the 1980s and 1990s. Conversely, machine learning techniques have been used to improve the 

performance of genetic and evolutionary algorithms. 
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Rule-based machine learning 
 

 

 

Rule-based machine learning is a general term for any machine learning method that identifies, 

learns, or evolves "rules" to store, manipulate or apply, knowledge. The defining characteristic of 

a rule-based machine learner is the identification and utilization of a set of relational rules that 

collectively represent the knowledge captured by the system. This is in contrast to other machine 

learners that commonly identify a singular model that can be universally applied to any instance 

in order to make a prediction. Rule-based machine learning approaches include learning classifier 

systems, association rule learning, and artificial immune systems. 

Feature selection approach 

 
Feature selection is the process of selecting an optimal subset of relevant features for use in model 

construction. It is assumed the data contains some features that are either redundant or irrelevant, 

and can thus be removed to reduce calculation cost without incurring much loss of information. 

Common optimality criteria include accuracy, similarity and information measures. 
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MACHINE LEARNING LABORATORY 
 

[As per Choice Based Credit System (CBCS) scheme] 

(Effective from the academic year 2016 -2017) SEMESTER – VII 

Subject Code 15CSL76 IA Marks 20 

Number of Lecture Hours/Week 01I + 02P Exam Marks 80 

Total Number of Lecture Hours 40 Exam Hours 03 

 
CREDITS – 02 

 

 
Course objectives: This course will enable students to 

1. Make use of Data sets in implementing the machine learning algorithms 

2. Implement the machine learning concepts and algorithms in any suitable language 
of choice. 

Description (If any): 

 
1. The programs can be implemented in either JAVA or Python. 

2. For Problems 1 to 6 and 10, programs are to be developed without using the built- 

in classes or APIs of Java/Python. 

3. Data sets can be taken from standard repositories 
(https://archive.ics.uci.edu/ml/datasets.html) or constructedby the students. 

Lab Experiments: 

 
1. Implement and demonstratethe FIND-Salgorithm for finding the most specific 

hypothesis based on a given set of training data samples. Read the training data from a 

.CSV file. 

2. For a given set of training data examples stored in a .CSV file, implement and 
demonstrate the Candidate-Elimination algorithmto output a description of the set of all 
hypotheses consistent with the training examples. 

3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. 

Use an appropriate data set for building the decision tree and apply this knowledge 

toclassify a new sample. 

4. Build an Artificial Neural Network by implementing the Backpropagation algorithm 

and test the same using appropriate data sets. 

5. Write a program to implement the naïve Bayesian classifier for a sample training data 

set stored as a .CSV file. Compute the accuracy of the classifier, considering few test 

data sets. 



 

 

 

6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier 

model to perform this task. Built-in Java classes/API can be used to write the program. 

Calculate the accuracy, precision, and recall for your data set. 

7. Write a program to construct a Bayesian network considering medical data. Use this 

model to demonstrate the diagnosis of heart patients using standard Heart Disease Data 

Set. You can use Java/Python ML library classes/API. 

8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data  set 

for clustering using k-Means algorithm. Compare the results of these two algorithms 

and comment on the quality of clustering. You can add Java/Python ML library 

classes/API in the program. 

9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data 

set. Print both correct and wrong predictions. Java/Python ML library classes can be 

used for this problem. 

10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit 

data points. Select appropriate data set for your experiment and draw graphs. 

 

Study Experiment / Project: 

Course outcomes: The students should be able to: 
 

1. Understand the implementation procedures for the machine learning algorithms. 
2. Design Java/Python programs for various Learning algorithms. 

3. Applyappropriate data sets to the Machine Learning algorithms. 

4. Identify and apply Machine Learning algorithms to solve real world problems. 

 

Conduction of Practical Examination: 

 

• All laboratory experiments are to be included for practical examination. 
Students are allowed to pick one experiment from the lot. 

• Strictly follow the instructions as printed on the cover page of answer script 
Marks distribution: Procedure + Conduction + Viva:20 + 50 +10 (80) 

• Change of experiment is allowed only once and marks allotted to the procedure 
part to be made zero. 



 

 

1. Implement and demonstrate the FIND-S algorithm for finding the most specific 

hypothesis based on a given set of training data samples. Read the training data 

from a .CSV file. 

import csv 
 

with open('tennis.csv', 'r') as f: 

reader = csv.reader(f) 

your_list = list(reader) 

 

h = [['0', '0', '0', '0', '0', '0']] 

 

for i in your_list: 
print(i) 

if i[-1] == "True": 

j = 0 

for x in i: 
if x != "True": 

if x != h[0][j] and h[0][j] == '0': 

h[0][j] = x 
elif x != h[0][j] and h[0][j] != '0': 

h[0][j] = '?' 
else: 

pass 

j = j + 1 

print("Most specific hypothesis is") 

print(h) 
 

Output 

 

'Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same',True 

'Sunny', 'Warm', 'High', 'Strong', 'Warm', 'Same',True 

'Rainy', 'Cold', 'High', 'Strong', 'Warm', 'Change',False 

'Sunny', 'Warm', 'High', 'Strong', 'Cool', 'Change',True 

 

Maximally Specific set 

[['Sunny', 'Warm', '?', 'Strong', '?', '?']] 



 

 

 

 

2. For a given set of training data examples stored in a .CSV file, implement and 
demonstrate the Candidate-Elimination algorithm to output a description of the set of all 
hypotheses consistent with the training examples. 

 
 

class Holder: 
factors={} #Initialize an empty dictionary 

attributes = () #declaration of dictionaries parameters with an arbitrary length 

 
''' 

Constructor of class Holder holding two parameters, 

self refers to the instance of the class 
''' 

def init (self,attr): # 

self.attributes = attr 

for i in attr: 

self.factors[i]=[] 

 
def add_values(self,factor,values): 

self.factors[factor]=values 

 
class CandidateElimination: 

Positive={} #Initialize positive empty dictionary 

Negative={} #Initialize negative empty dictionary 

 

def init (self,data,fact): 
self.num_factors = len(data[0][0]) 

self.factors = fact.factors 

self.attr = fact.attributes 
self.dataset = data 

 

def run_algorithm(self): 

''' 
Initialize the specific and general boundaries, and loop the dataset against the 

algorithm 
''' 

G = self.initializeG() 
S = self.initializeS() 

 
''' 

Programmatically populate list in the iterating variable trial_set 

''' 

count=0 
for trial_set in self.dataset: 

if self.is_positive(trial_set): #if trial set/example consists of positive examples 

G = self.remove_inconsistent_G(G,trial_set[0]) #remove inconsitent data from 
the general boundary 



 

 

 

 

 

S_new = S[:] #initialize the dictionary with no key-value pair 

print (S_new) 

for s in S: 

if not self.consistent(s,trial_set[0]): 
S_new.remove(s) 
generalization = self.generalize_inconsistent_S(s,trial_set[0]) 
generalization = self.get_general(generalization,G) 

if generalization: 

S_new.append(generalization) 
S = S_new[:] 

S = self.remove_more_general(S) 

print(S) 
 

else:#if it is negative 
 

S = self.remove_inconsistent_S(S,trial_set[0]) #remove inconsitent data from 

the specific boundary 

G_new = G[:] #initialize the dictionary with no key-value pair (dataset can 

take any value) 

print (G_new) 

for g in G: 

if self.consistent(g,trial_set[0]): 

G_new.remove(g) 

specializations = self.specialize_inconsistent_G(g,trial_set[0]) 
specializationss = self.get_specific(specializations,S) 

if specializations != []: 

G_new += specializationss 
G = G_new[:] 

G = self.remove_more_specific(G) 

print(G) 
 

print (S) 

print (G) 

 
def initializeS(self): 

''' Initialize the specific boundary ''' 

S = tuple(['-' for factor in range(self.num_factors)]) #6 constraints in the vector 

return [S] 

 
def initializeG(self): 

''' Initialize the general boundary ''' 

G = tuple(['?' for factor in range(self.num_factors)]) # 6 constraints in the vector 
return [G] 

 
def is_positive(self,trial_set): 

''' Check if a given training trial_set is positive ''' 
if trial_set[1] == 'Y': 



 

 

 

 

 

return True 

elif trial_set[1] == 'N': 

return False 
else: 

raise TypeError("invalid target value") 

 
def match_factor(self,value1,value2): 

''' Check for the factors values match, 

necessary while checking the consistency of 

training trial_set with the hypothesis ''' 

if value1 == '?' or value2 == '?': 
return True 

elif value1 == value2 : 
return True 

return False 

 
def consistent(self,hypothesis,instance): 

''' Check whether the instance is part of the hypothesis ''' 

for i,factor in enumerate(hypothesis): 

if not self.match_factor(factor,instance[i]): 

return False 

return True 

 
def remove_inconsistent_G(self,hypotheses,instance): 

''' For a positive trial_set, the hypotheses in G 

inconsistent with it should be removed ''' 

G_new = hypotheses[:] 

 
for g in hypotheses: 

if not self.consistent(g,instance): 

G_new.remove(g) 
return G_new 

 

def remove_inconsistent_S(self,hypotheses,instance): 

''' For a negative trial_set, the hypotheses in S 
inconsistent with it should be removed ''' 

S_new = hypotheses[:] 

for s in hypotheses: 

if self.consistent(s,instance): 

S_new.remove(s) 

return S_new 

 
def remove_more_general(self,hypotheses): 

''' After generalizing S for a positive trial_set, the hypothesis in S 

general than others in S should be removed ''' 

S_new = hypotheses[:] 

for old in hypotheses: 



 

 

 

 

 

for new in S_new: 

if old!=new and self.more_general(new,old): 

S_new.remove[new] 

return S_new 

 
def remove_more_specific(self,hypotheses): 

''' After specializing G for a negative trial_set, the hypothesis in G 

specific than others in G should be removed ''' 
G_new = hypotheses[:] 

for old in hypotheses: 

for new in G_new: 

if old!=new and self.more_specific(new,old): 
G_new.remove[new] 

return G_new 

 
def generalize_inconsistent_S(self,hypothesis,instance): 

''' When a inconsistent hypothesis for positive trial_set is seen in the specific 

boundary S, 

it should be generalized to be consistent with the trial_set ... we will get one 
hypothesis''' 

hypo = list(hypothesis) # convert tuple to list for mutability 

for i,factor in enumerate(hypo): 
if factor == '-': 

hypo[i] = instance[i] 

elif not self.match_factor(factor,instance[i]): 

hypo[i] = '?' 

generalization = tuple(hypo) # convert list back to tuple for immutability 
return generalization 

 
def specialize_inconsistent_G(self,hypothesis,instance): 

''' When a inconsistent hypothesis for negative trial_set is seen in the general 

boundary G 

should be specialized to be consistent with the trial_set.. we will get a set of 

hypotheses ''' 
specializations = [] 

hypo = list(hypothesis) # convert tuple to list for mutability 

for i,factor in enumerate(hypo): 
if factor == '?': 

values = self.factors[self.attr[i]] 

for j in values: 

if instance[i] != j: 

hyp=hypo[:] 

hyp[i]=j 

hyp=tuple(hyp) # convert list back to tuple for immutability 

specializations.append(hyp) 

return specializations 



 

 

 

 

 

def get_general(self,generalization,G): 
''' Checks if there is more general hypothesis in G 

for a generalization of inconsistent hypothesis in S 

in case of positive trial_set and returns valid generalization ''' 

 
for g in G: 

if self.more_general(g,generalization): 

return generalization 
return None 

 

def get_specific(self,specializations,S): 

''' Checks if there is more specific hypothesis in S 

for each of hypothesis in specializations of an 
inconsistent hypothesis in G in case of negative trial_set 

and return the valid specializations''' 
valid_specializations = [] 

for hypo in specializations: 
for s in S: 

if self.more_specific(s,hypo) or s==self.initializeS()[0]: 

valid_specializations.append(hypo) 
return valid_specializations 

 

def exists_general(self,hypothesis,G): 

'''Used to check if there exists a more general hypothesis in 

general boundary for version space''' 

 
for g in G: 

if self.more_general(g,hypothesis): 

return True 
return False 

 

def exists_specific(self,hypothesis,S): 

'''Used to check if there exists a more specific hypothesis in 
general boundary for version space''' 

 
for s in S: 

if self.more_specific(s,hypothesis): 

return True 

return False 
 

def more_general(self,hyp1,hyp2): 

''' Check whether hyp1 is more general than hyp2 ''' 
hyp = zip(hyp1,hyp2) 

for i,j in hyp: 

if i == '?': 
continue 



 

 

 

 

 

elif j == '?': 

if i != '?': 

return False 

elif i != j: 

return False 
else: 

continue 

return True 

 
def more_specific(self,hyp1,hyp2): 

''' hyp1 more specific than hyp2 is 

equivalent to hyp2 being more general than hyp1 ''' 

return self.more_general(hyp2,hyp1) 

 
dataset=[(('sunny','warm','normal','strong','warm','same'),'Y'),(('sunny','warm','high','stron 

g','warm','same'),'Y'),(('rainy','cold','high','strong','warm','change'),'N'),(('sunny','warm','hi 
gh','strong','cool','change'),'Y')] 

attributes =('Sky','Temp','Humidity','Wind','Water','Forecast') 

f = Holder(attributes) 

f.add_values('Sky',('sunny','rainy','cloudy')) #sky can be sunny rainy or cloudy 

f.add_values('Temp',('cold','warm')) #Temp can be sunny cold or warm 

f.add_values('Humidity',('normal','high')) #Humidity can be normal or high 

f.add_values('Wind',('weak','strong')) #wind can be weak or strong 

f.add_values('Water',('warm','cold')) #water can be warm or cold 

f.add_values('Forecast',('same','change')) #Forecast can be same or change 

a = CandidateElimination(dataset,f) #pass the dataset to the algorithm class and call the 

run algoritm method 
a.run_algorithm() 

 
 

Output 

 

[('sunny', 'warm', 'normal', 'strong', 'warm', 'same')] 

[('sunny', 'warm', 'normal', 'strong', 'warm', 'same')] 

[('sunny', 'warm', '?', 'strong', 'warm', 'same')] 
[('?', '?', '?', '?', '?', '?')] 
[('sunny', '?', '?', '?', '?', '?'), ('?', 'warm', '?', '?', '?', '?'), ('?', '?', '?', '?', '?', 'same')] 

[('sunny', 'warm', '?', 'strong', 'warm', 'same')] 

[('sunny', 'warm', '?', 'strong', '?', '?')] 

[('sunny', 'warm', '?', 'strong', '?', '?')] 

[('sunny', '?', '?', '?', '?', '?'), ('?', 'warm', '?', '?', '?', '?')] 



 

 

 

 

3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. 
Use an appropriate data set for building the decision tree and apply this knowledge to 
classify a new sample. 

 
 

import numpy as np 

import math 

from data_loader import read_data 

 
class Node: 

def init (self, attribute): 

self.attribute = attribute 

self.children = [] 

self.answer = "" 
 

def   str   (self): 

return self.attribute 

 

def subtables(data, col, delete): 
dict = {} 

items = np.unique(data[:, col]) 

count = np.zeros((items.shape[0], 1), dtype=np.int32) 

for x in range(items.shape[0]): 

for y in range(data.shape[0]): 
if data[y, col] == items[x]: 

count[x] += 1 

 
for x in range(items.shape[0]): 

dict[items[x]] = np.empty((int(count[x]), data.shape[1]), dtype="|S32") 

 
 

pos = 0 

for y in range(data.shape[0]): 

if data[y, col] == items[x]: 
dict[items[x]][pos] = data[y] 
pos += 1 

 

if delete: 

dict[items[x]] = np.delete(dict[items[x]], col, 1) 

return items, dict 

def entropy(S): 

items = np.unique(S) 

if items.size == 1: 



 

 

 

 

 

return 0 

 
counts = np.zeros((items.shape[0], 1)) 

sums = 0 

 

for x in range(items.shape[0]): 

 

counts[x] = sum(S == items[x]) / (S.size * 1.0) 

 
for count in counts: 

sums += -1 * count * math.log(count, 2) 
return sums 

 
def gain_ratio(data, col): 

items, dict = subtables(data, col, delete=False) 

 
total_size = data.shape[0] 

entropies = np.zeros((items.shape[0], 1)) 

intrinsic = np.zeros((items.shape[0], 1)) 

for x in range(items.shape[0]): 

ratio = dict[items[x]].shape[0]/(total_size * 1.0) 

entropies[x] = ratio * entropy(dict[items[x]][:, -1]) 

intrinsic[x] = ratio * math.log(ratio, 2) 
 

total_entropy = entropy(data[:, -1]) 

iv = -1 * sum(intrinsic) 

 
for x in range(entropies.shape[0]): 

total_entropy -= entropies[x] 

 

return total_entropy / iv 

 
def create_node(data, metadata): 

if (np.unique(data[:, -1])).shape[0] == 1: 

node = Node("") 

node.answer = np.unique(data[:, -1])[0] 

return node 

 
gains = np.zeros((data.shape[1] - 1, 1)) 
for col in range(data.shape[1] - 1): 

gains[col] = gain_ratio(data, col) 

split = np.argmax(gains) 

 

node = Node(metadata[split]) 



 

 

 

 

 

metadata = np.delete(metadata, split, 0) 

items, dict = subtables(data, split, delete=True) 

 
for x in range(items.shape[0]): 

child = create_node(dict[items[x]], metadata) 

node.children.append((items[x], child)) 

return node 

def empty(size): 

s = "" 

for x in range(size): 
s += " " 

return s 
 

def print_tree(node, level): 

if node.answer != "": 
print(empty(level), node.answer) 

return 

print(empty(level), node.attribute) 

for value, n in node.children: 

print(empty(level + 1), value) 

print_tree(n, level + 2) 

 
 

metadata, traindata = read_data("tennis.csv") 
data = np.array(traindata) 

node = create_node(data, metadata) 
print_tree(node, 0) 

 
Data_loader.py 

import csv 
def read_data(filename): 

with open(filename, 'r') as csvfile: 

datareader = csv.reader(csvfile, delimiter=',') 

headers = next(datareader) 
metadata = [] 
traindata = [] 

for name in headers: 
metadata.append(name) 

for row in datareader: 
traindata.append(row) 

 

return (metadata, traindata) 



 

 

 

 

Tennis.csv 

 

outlook,temperature,humidity,wind, 

answer sunny,hot,high,weak,no 

sunny,hot,high,strong,no 

overcast,hot,high,weak,yes 

rain,mild,high,weak,yes 

rain,cool,normal,weak,yes 

rain,cool,normal,strong,no 

overcast,cool,normal,strong,yes 

sunny,mild,high,weak,no 

sunny,cool,normal,weak,yes 

rain,mild,normal,weak,yes 

sunny,mild,normal,strong,yes 

overcast,mild,high,strong,yes 

overcast,hot,normal,weak,yes 

rain,mild,high,strong,no 

 

Output 

outlook 

overcast 

b'yes' 
rain 

wind 

b'strong' 

b'no' 

b'weak' 

b'yes' 
sunny 

humidity 
b'high' 

b'no' 

b'normal' 

b'yes 



 

 

 

 

4. Build an Artificial Neural Network by implementing the Backpropagation 
algorithm and test the same using appropriate data sets. 

 

import numpy as np 

X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float) 
y = np.array(([92], [86], [89]), dtype=float) 

X = X/np.amax(X,axis=0) # maximum of X array longitudinally 

y = y/100 

 
#Sigmoid Function 

def sigmoid (x): 
return 1/(1 + np.exp(-x)) 

 
#Derivative of Sigmoid Function 
def derivatives_sigmoid(x): 

return x * (1 - x) 

 
#Variable initialization 

epoch=7000 #Setting training iterations 
lr=0.1 #Setting learning rate 

inputlayer_neurons = 2 #number of features in data set 

hiddenlayer_neurons = 3 #number of hidden layers neurons 

output_neurons = 1 #number of neurons at output layer 

#weight and bias initialization 

wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons)) 

bh=np.random.uniform(size=(1,hiddenlayer_neurons)) 

wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons)) 

bout=np.random.uniform(size=(1,output_neurons)) 

#draws a random range of numbers uniformly of dim x*y 

for i in range(epoch): 
 

#Forward Propogation 

hinp1=np.dot(X,wh) 
hinp=hinp1 + bh 

hlayer_act = sigmoid(hinp) 

outinp1=np.dot(hlayer_act,wout) 

outinp= outinp1+ bout 
output = sigmoid(outinp) 

 

#Backpropagation 

EO = y-output 
outgrad = derivatives_sigmoid(output) 

d_output = EO* outgrad 
EH = d_output.dot(wout.T) 

hiddengrad = derivatives_sigmoid(hlayer_act)#how much hidden layer wts 

contributed to error 



 

 

 

 

 

d_hiddenlayer = EH * hiddengrad 

wout += hlayer_act.T.dot(d_output) *lr# dotproduct of nextlayererror and 

currentlayerop 

# bout += np.sum(d_output, axis=0,keepdims=True) *lr 

wh += X.T.dot(d_hiddenlayer) *lr 

#bh += np.sum(d_hiddenlayer, axis=0,keepdims=True) *lr 

print("Input: \n" + str(X)) 
print("Actual Output: \n" + str(y)) 

print("Predicted Output: \n" ,output) 
 
 

output  
Input: 
[[ 0.66666667 1. ] 

[ 0.33333333 0.55555556] 

[ 1. 0.66666667]] 

Actual Output: 
[[ 0.92] 

[ 0.86] 
[ 0.89]] 

Predicted Output: 

[[ 0.89559591] 

[ 0.88142069] 

[ 0.8928407 ]] 



 

 

 

 

5. Write a program to implement the naïve Bayesian classifier for a sample training data 
set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data 
sets. 

 
 

import csv 
import random 
import math 

 
def loadCsv(filename): 

lines = csv.reader(open(filename, "r")); 

dataset = list(lines) 
for i in range(len(dataset)): 

#converting strings into numbers for processing 
dataset[i] = [float(x) for x in dataset[i]] 

 

return dataset 

 

def splitDataset(dataset, splitRatio): 
#67% training size 

trainSize = int(len(dataset) * splitRatio); 
trainSet = [] 

copy = list(dataset); 

while len(trainSet) < trainSize: 

#generate indices for the dataset list randomly to pick ele for training data 

index = random.randrange(len(copy)); 

trainSet.append(copy.pop(index)) 
return [trainSet, copy] 

def separateByClass(dataset): 
separated = {} 

#creates a dictionary of classes 1 and 0 where the values are the instacnes belonging to 
each class 

for i in range(len(dataset)): 
vector = dataset[i] 

if (vector[-1] not in separated): 

separated[vector[-1]] = [] 
separated[vector[-1]].append(vector) 

return separated 

 
def mean(numbers): 
return sum(numbers)/float(len(numbers)) 

 
def stdev(numbers): 
avg = mean(numbers) 

variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1) 
return math.sqrt(variance) 



 

 

 

 

def summarize(dataset): 

summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]; 
del summaries[-1] 
return summaries 

 
def summarizeByClass(dataset): 

separated = separateByClass(dataset); 
summaries = {} 
for classValue, instances in separated.items(): 

#summaries is a dic of tuples(mean,std) for each class value 
summaries[classValue] = summarize(instances) 

return summaries 

 
def calculateProbability(x, mean, stdev): 

exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2)))) 
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent 

 
def calculateClassProbabilities(summaries, inputVector): 
probabilities = {} 

for classValue, classSummaries in summaries.items():#class and attribute information 
as mean and sd 

probabilities[classValue] = 1 

for i in range(len(classSummaries)): 

mean, stdev = classSummaries[i] #take mean and sd of every attribute 

for class 0 and 1 seperaely 

x = inputVector[i] #testvector's first attribute 

probabilities[classValue] *= calculateProbability(x, mean, stdev);#use 
normal dist 

return probabilities 

 
def predict(summaries, inputVector): 

probabilities = calculateClassProbabilities(summaries, inputVector) 
bestLabel, bestProb = None, -1 
for classValue, probability in probabilities.items():#assigns that class which has he 

highest prob 

if bestLabel is None or probability > bestProb: 
bestProb = probability 
bestLabel = classValue 

return bestLabel 

 
def getPredictions(summaries, testSet): 
predictions = [] 
for i in range(len(testSet)): 

result = predict(summaries, testSet[i]) 

predictions.append(result) 

return predictions 



 

 

 

 

def getAccuracy(testSet, predictions): 
correct = 0 

for i in range(len(testSet)): 

if testSet[i][-1] == predictions[i]: 
correct += 1 

return (correct/float(len(testSet))) * 100.0 

 
def main(): 

filename = '5data.csv' 

splitRatio = 0.67 

dataset = loadCsv(filename); 

 
trainingSet, testSet = splitDataset(dataset, splitRatio) 

print('Split {0} rows into train={1} and test={2} rows'.format(len(dataset), 

len(trainingSet), len(testSet))) 
# prepare model 

summaries = summarizeByClass(trainingSet); 

# test model 

predictions = getPredictions(summaries, testSet) 

accuracy = getAccuracy(testSet, predictions) 

print('Accuracy of the classifier is : {0}%'.format(accuracy)) 

main() 

Output 

confusion matrix is as 

follows [[17 0 0] 
[ 0 17 0] 

[ 0 0 11]] 
Accuracy metrics 

precision recall f1-score support 
 

0 

1 

2 

 

avg / total 

1.00 

1.00 

1.00 

 

1.00 

1.00 

1.00 

1.00 

 

1.00 

1.00 17 

1.00 17 

1.00 11 

 

1.00 45 



 

 

 

 

6. Assuming a set of documents that need to be classified, use the naïve Bayesian 
Classifier model to perform this task. Built-in Java classes/API can be used to write 
the program. Calculate the accuracy, precision, and recall for your data set. 

 

import pandas as pd 

msg=pd.read_csv('naivetext1.csv',names=['message','label']) 

print('The dimensions of the dataset',msg.shape) 

msg['labelnum']=msg.label.map({'pos':1,'neg':0}) 

X=msg.message 

y=msg.labelnum 

print(X) 

print(y) 

 

#splitting the dataset into train and test data 

from sklearn.model_selection import train_test_split 

xtrain,xtest,ytrain,ytest=train_test_split(X,y) 

print(xtest.shape) 

print(xtrain.shape) 
print(ytest.shape) 

print(ytrain.shape) 
#output of count vectoriser is a sparse matrix 

from sklearn.feature_extraction.text import CountVectorizer 

count_vect = CountVectorizer() 

xtrain_dtm = count_vect.fit_transform(xtrain) 

xtest_dtm=count_vect.transform(xtest) 

print(count_vect.get_feature_names()) 
 

df=pd.DataFrame(xtrain_dtm.toarray(),columns=count_vect.get_feature_names()) 
print(df)#tabular representation 

print(xtrain_dtm) #sparse matrix representation 

 
# Training Naive Bayes (NB) classifier on training data. 
from sklearn.naive_bayes import MultinomialNB 

clf = MultinomialNB().fit(xtrain_dtm,ytrain) 

predicted = clf.predict(xtest_dtm) 

 

#printing accuracy metrics 

from sklearn import metrics 

print('Accuracy metrics') 

print('Accuracy of the classifer is',metrics.accuracy_score(ytest,predicted)) 

print('Confusion matrix') 

print(metrics.confusion_matrix(ytest,predicted)) 

print('Recall and Precison ') 

print(metrics.recall_score(ytest,predicted)) 

print(metrics.precision_score(ytest,predicted)) 
 

'''docs_new = ['I like this place', 'My boss is not my saviour'] 



 

 

 

 

 

X_new_counts = count_vect.transform(docs_new) 

predictednew = clf.predict(X_new_counts) 
for doc, category in zip(docs_new, predictednew): 

print('%s->%s' % (doc, msg.labelnum[category]))''' 

 

I love this sandwich,pos 

This is an amazing place,pos 

I feel very good about these beers,pos 

This is my best work,pos 
What an awesome view,pos 

I do not like this restaurant,neg 

I am tired of this stuff,neg 

I can't deal with this,neg 
He is my sworn enemy,neg 

My boss is horrible,neg 
This is an awesome place,pos 

I do not like the taste of this juice,neg 

I love to dance,pos 

I am sick and tired of this place,neg 

What a great holiday,pos 

That is a bad locality to stay,neg 

We will have good fun tomorrow,pos 

I went to my enemy's house today,neg 

 

OUTPUT 

 

['about', 'am', 'amazing', 'an', 'and', 'awesome', 'beers', 'best', 'boss', 'can', 'deal', 
'do', 'enemy', 'feel', 'fun', 'good', 'have', 'horrible', 'house', 'is', 'like', 'love', 'my', 

'not', 'of', 'place', 'restaurant', 'sandwich', 'sick', 'stuff', 'these', 'this', 'tired', 'to', 

'today', 'tomorrow', 'very', 'view', 'we', 'went', 'what', 'will', 'with', 'work'] 

about am amazing an and awesome beers best boss can ... today \ 
0 1 0 0 0 0 0 1 0 0 0 ... 0 

1 0 0 0 0 0 0 0 1 0 0 ... 0 

2 0 0 1 1 0 0 0 0 0 0 ... 0 

3 0 0 0 0 0 0 0 0 0 0 ... 1 

4 0 0 0 0 0 0 0 0 0 0 ... 0 

5 0 1 0 0 1 0 0 0 0 0 ... 0 
6 0 0 0 0 0 0 0 0 0 1 ... 0 

7 0 0 0 0 0 0 0 0 0 0 ... 0 

8 0 1 0 0 0 0 0 0 0 0 ... 0 
9 0 0 0 1 0 1 0 0 0 0 ... 0 
10 0 0 0 0 0 0 0 0 0 0 ... 0 

11 0 0 0 0 0 0 0 0 1 0 ... 0 
12 0 0 0 1 0 1 0 0 0 0 ... 0 



 

 

 

tomorrow very   view we went what will with work 
0 0  1 0 0  0 0   0  0 0 
1 0 0 0 0 0 0 0 0 1 

2 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 1 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 1 0 

7 1 0 0 1 0 0 1 0 0 
8 0 0 0 0 0 0 0 0 0 



 

 

 

7. Write a program to construct a Bayesian network considering medical data. Use 

this model to demonstrate the diagnosis of heart patients using standard Heart 

Disease Data Set. You can use Java/Python ML library classes/API. 

 

From pomegranate import* 
Asia=DiscreteDistribution({ „True‟:0.5, „False‟:0.5 }) 
Tuberculosis=ConditionalProbabilityTable( 

[[ „True‟, „True‟, 0.2], 

[„True‟, „False‟, 0.8], 

[ „False‟, „True‟, 0.01], 

[ „False‟, „False‟, 0.98]], [asia]) 

 

Smoking = DiscreteDistribution({ „True‟:0.5, „False‟:0.5 }) 
Lung = ConditionalProbabilityTable( 
[[ „True‟, „True‟, 0.75], 

[„True‟, „False‟,0.25]. 

[ „False‟, „True‟, 0.02], 

[ „False‟, „False‟, 0.98]], [ smoking]) 

 
Bronchitis = ConditionalProbabilityTable( 
[[ „True‟, „True‟, 0.92], 

[„True‟, „False‟,0.08]. 
[ „False‟, „True‟,0.03], 
[ „False‟, „False‟, 0.98]], [ smoking]) 

 
Tuberculosis_or_cancer = ConditionalProbabilityTable( 
[[ „True‟, „True‟, „True‟, 1.0], 

[„True‟, „True‟, „False‟, 0.0], 
[„True‟, „False‟, „True‟, 1.0], 

[„True‟, „False‟, „False‟, 0.0], 
[„False‟, „True‟, „True‟, 1.0], 

[„False‟, „True‟, „False‟, 0.0], 
[„False‟, „False‟ „True‟, 1.0], 

[„False‟, „False‟, „False‟, 0.0]], [tuberculosis, lung]) 

Xray = ConditionalProbabilityTable( 

[[ „True‟, „True‟, 0.885], 

[„True‟, „False‟, 0.115], 

[ „False‟, „True‟, 0.04], 



 

 

 

 

 
[ „False‟, „False‟, 0.96]], [tuberculosis_or_cancer]) 
dyspnea = ConditionalProbabilityTable( 
[[ „True‟, „True‟, „True‟, 0.96], 

[„True‟, „True‟, „False‟, 0.04], 

[„True‟, „False‟, „True‟, 0.89], 

[„True‟, „False‟, „False‟, 0.11], 

[„False‟, „True‟, „True‟, 0.96], 

[„False‟, „True‟, „False‟, 0.04], 

[„False‟, „False‟ „True‟, 0.89], 

[„False‟, „False‟, „False‟, 0.11 ]], [tuberculosis_or_cancer, bronchitis]) 

s0 = State(asia, name=”asia”) 

s1 = State(tuberculosis, name=” tuberculosis”) 
s2 = State(smoking, name=” smoker”) 

 

network = BayesianNetwork(“asia”) 

network.add_nodes(s0,s1,s2) 

network.add_edge(s0,s1) 

network.add_edge(s1.s2) 

network.bake() 

print(network.predict_probal({„tuberculosis‟: „True‟})) 



 

 

 

 

8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data 

set for clustering using k-Means algorithm. Compare the results of these two 

algorithms and comment on the quality of clustering. You can add Java/Python ML 

library classes/API in the program. 
 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.datasets.samples_generator import make_blobs 

X, y_true = make_blobs(n_samples=100, centers = 

4,Cluster_std=0.60,random_state=0) 

X = X[:, ::-1] 

 
#flip axes for better plotting 

from sklearn.mixture import GaussianMixture 

gmm = GaussianMixture (n_components = 4).fit(X) 

lables = gmm.predict(X) 

plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap=‟viridis‟); 

probs = gmm.predict_proba(X) 
print(probs[:5].round(3)) 

size = 50 * probs.max(1) ** 2 # square emphasizes differences 

plt.scatter(X[:, 0], X[:, 1], c=labels, cmap=‟viridis‟, s=size); 

 
 

from matplotlib.patches import Ellipse 

def draw_ellipse(position, covariance, ax=None, **kwargs); 

“””Draw an ellipse with a given position and covariance””” 
Ax = ax or plt.gca() 
# Convert covariance to principal axes 

if covariance.shape ==(2,2): 
 

U, s, Vt = np.linalg.svd(covariance) 

Angle = np.degrees(np.arctan2(U[1, 0], U[0,0])) 

Width, height = 2 * np.sqrt(s) 
else: 

angle = 0 

width, height = 2 * np.sqrt(covariance) 

 
#Draw the Ellipse 

for nsig in range(1,4): 

ax.add_patch(Ellipse(position, nsig * width, nsig *height, 

angle, **kwargs)) 
 

def plot_gmm(gmm, X, label=True, ax=None): 
ax = ax or plt.gca() 

labels = gmm.fit(X).predict(X) 

if label: 



 

 

 

 

 

ax.scatter(X[:, 0], x[:, 1], c=labels, s=40, cmap=‟viridis‟, zorder=2) 
else: 

ax.scatter(X[:, 0], x[:, 1], s=40, zorder=2) 
ax.axis(„equal‟) 

 
w_factor = 0.2 / gmm.weights_.max() 

for pos, covar, w in zip(gmm.means_, gmm.covariances_, gmm.weights_): 
draw_ellipse(pos, covar, alpha=w * w_factor) 

 
gmm = GaussianMixture(n_components=4, random_state=42) 
plot_gmm(gmm, X) 

gmm = GaussianMixture(n_components=4, covariance_type=‟full‟, 

random_state=42) 
plot_gmm(gmm, X) 

 

Output 

 

[[1 ,0, 0, 0] 

[0 ,0, 1, 0] 

[1 ,0, 0, 0] 

[1 ,0, 0, 0] 

[1 ,0, 0, 0]] 



 

 

 

 

 

K-means 
 

from sklearn.cluster import KMeans 

 
#from sklearn import metrics 
import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

data=pd.read_csv("kmeansdata.csv") 

df1=pd.DataFrame(data) 

print(df1) 

f1 = df1['Distance_Feature'].values 
f2 = df1['Speeding_Feature'].values 

 

X=np.matrix(list(zip(f1,f2))) 
plt.plot() 

plt.xlim([0, 100]) 

plt.ylim([0, 50]) 

plt.title('Dataset') 

plt.ylabel('speeding_feature') 

plt.xlabel('Distance_Feature') 

plt.scatter(f1,f2) 

plt.show() 

 
# create new plot and data 
plt.plot() 

colors = ['b', 'g', 'r'] 

markers = ['o', 'v', 's'] 
 

# KMeans algorithm 
#K = 3 

kmeans_model = KMeans(n_clusters=3).fit(X) 

 
plt.plot() 
for i, l in enumerate(kmeans_model.labels_): 

plt.plot(f1[i], f2[i], color=colors[l], marker=markers[l],ls='None') 

plt.xlim([0, 100]) 

plt.ylim([0, 50]) 

plt.show() 

Driver_ID,Distance_Feature,Speeding_Feature 

3423311935,71.24,28 

3423313212,52.53,25 
3423313724,64.54,27 

3423311373,55.69,22 
3423310999,54.58,25 



 

 

 

 

 

3423313857,41.91,10 

3423312432,58.64,20 

3423311434,52.02,8 

3423311328,31.25,34 
3423312488,44.31,19 
3423311254,49.35,40 
3423312943,58.07,45 
3423312536,44.22,22 

3423311542,55.73,19 

3423312176,46.63,43 

3423314176,52.97,32 

3423314202,46.25,35 

3423311346,51.55,27 

3423310666,57.05,26 

3423313527,58.45,30 

3423312182,43.42,23 

3423313590,55.68,37 

3423312268,55.15,18 
 

 

 



 

 

 

 

9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris 

data set. Print both correct and wrong predictions. Java/Python ML library classes 

can be used for this problem. 

import csv 
import random 
import math 
import operator 

 
def loadDataset(filename, split, trainingSet=[] , testSet=[]): 

with open(filename, 'rb') as csvfile: 
lines = csv.reader(csvfile) 
dataset = list(lines) 

for x in range(len(dataset)-1): 

for y in range(4): 

dataset[x][y] = float(dataset[x][y]) 

if random.random() < split: 
trainingSet.append(dataset[x]) 

else: 
testSet.append(dataset[x]) 

 
 

def euclideanDistance(instance1, instance2, length): 
distance = 0 
for x in range(length): 

distance += pow((instance1[x] - instance2[x]), 2) 

return math.sqrt(distance) 

 
def getNeighbors(trainingSet, testInstance, k): 

distances = [] 

length = len(testInstance)-1 
for x in range(len(trainingSet)): 

dist = euclideanDistance(testInstance, trainingSet[x], length) 
distances.append((trainingSet[x], dist)) 

distances.sort(key=operator.itemgetter(1)) 
neighbors = [] 

for x in range(k): 

neighbors.append(distances[x][0]) 
return neighbors 

 
def getResponse(neighbors): 

classVotes = {} 

for x in range(len(neighbors)): 
response = neighbors[x][-1] 

if response in classVotes: 
classVotes[response] += 1 

else: 

classVotes[response] = 1 



 

 

 
 

sortedVotes = 

sorted(classVotes.iteritems(), 
reverse=True) 

return sortedVotes[0][0] 

 
def getAccuracy(testSet, 

predictions): correct = 0 
for x in 
range(len(testSet)): 
key=operator.itemgetter(1 
), 

if testSet[x][-1] == predictions[x]: 
correct += 1 

return (correct/float(len(testSet))) * 100.0 

 
def main(): 

# prepare 

data 

trainingSet= 

[] testSet=[] 

split = 0.67 

loadDataset('knndat.data', split, trainingSet, 
testSet) print('Train set: ' + repr(len(trainingSet))) 
print('Test set: ' + repr(len(testSet))) 

# generate 

predictions 

predictions=[] 

k=3 
for x in range(len(testSet)): 

neighbors = getNeighbors(trainingSet, testSet[x], 

k) result = getResponse(neighbors) 

predictions.append(result) 
print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][- 

1])) accuracy = getAccuracy(testSet, predictions) 

print('Accuracy: ' + repr(accuracy) + 

'%') main() 



 

 

 
 

OUTPUT 

Confusion matrix is as follows 

 

[[11 0 0] 

 

[0 9 1] 

 

[0 1 8]] 

 
Accuracy metrics 

0 1.00 1.00 1.00 11 

1 0.90 0.90 0.90 10 
 

2 0.89 0.89 0,89 9 
 

Avg/Total 0.93 0.93 0.93 30 



 

 

 

10. Implement the non-parametric Locally Weighted Regression algorithm in order 
to fit data points. Select appropriate data set for your experiment and draw graphs. 

from numpy import * 
import operator 

from os import listdir 

import matplotlib 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np1 

import numpy.linalg as np 
from scipy.stats.stats import pearsonr 

 

def kernel(point,xmat, k): 

m,n = np1.shape(xmat) 

weights = np1.mat(np1.eye((m))) 

for j in range(m): 
diff = point - X[j] 

weights[j,j] = np1.exp(diff*diff.T/(-2.0*k**2)) 

return weights 

 

def localWeight(point,xmat,ymat,k): 

wei = kernel(point,xmat,k) 

W=(X.T*(wei*X)).I*(X.T*(wei*ymat.T)) 
return W 

 
def localWeightRegression(xmat,ymat,k): 

m,n = np1.shape(xmat) 

ypred = np1.zeros(m) 
for i in range(m): 

ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k) 
return ypred 

 
# load data points 

data = pd.read_csv('data10.csv') 

bill = np1.array(data.total_bill) 

tip = np1.array(data.tip) 

 

#preparing and add 1 in bill 

mbill = np1.mat(bill) 

mtip = np1.mat(tip) 
m= np1.shape(mbill)[1] 

one = np1.mat(np1.ones(m)) 

X= np1.hstack((one.T,mbill.T)) 

#set k here 

ypred = localWeightRegression(X,mtip,2) 



 

 

 

SortIndex = X[:,1].argsort(0) 

xsort = X[SortIndex][:,0] 

 
Output 

 

 



 

 

 

Viva Questions 

1. What is machine learning? 

2. Define supervised learning 

3. Define unsupervised learning 

4. Define semi supervised learning 

5. Define reinforcement learning 

6. What do you mean by hypotheses 

7. What is classification 

8. What is clustering 

9. Define precision, accuracy and recall 

10.Define entropy 

11. Define regression 

12. How Knn is different from k-means clustering 
 

13. What is concept learning 

14. Define specific boundary and general boundary 

15.Define target function 

16.Define decision tree 

17.What is ANN 

18.Explain gradient descent approximation 

19.State Bayes theorem 

20.Define Bayesian belief networks 

21.Differentiate hard and soft clustering 

22. Define variance 

23. What is inductive machine learning 

24. Why K nearest neighbour algorithm is lazy learningalgorithm 

25. Why naïve Bayes is naïve 

26.Mention classification algorithms 

27.Define pruning 



 

 

 

28.Differentiate Clustering and classification 

29.Mention clustering algorithms 

30.Define Bias 
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